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SPACE: General Features and Capabilities
SPACE: Parallelization

SELF-CONSISTENT PARALLEL TRACKING CODE SPACE⇤

SPACE
(Self-consistent Parallel Algorithm for Collective Effects)

Efficient study of short and long-range wakefield effects in 6D
phase-space via parallel processing communications.
Study of slow head-tail effect + coupled-bunch instabilities.
Passive higher harmonic cavity effects with arbitrary fillings.
Landau damping from betatron tune spread.
Microwave instability.
Efficient methods for density estimation from particles.
Localized wakefield effects.

⇤ G. Bassi et al., Phys. Rev. Acc. Beams 19 024401, 2016.
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SPACE: General Features and Capabilities
SPACE: Parallelization

GENERAL PARALLEL STRUCTURE

M bunches each with N simulations particles distributed to M
processors.
Short-range (single bunch) wakefield interaction calculated in
serial (locally).
Long-range wakefield calculation done in parallel (globally) via
master-to-slave processor communications by storing the
“history” of moments of the bunches.
For efficient study of microwave instability, the calculation is
done in parallel by distributing N/M simulation particles to M
processors.
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Theoretical Analysis
Measurements

ANALYTICAL TREATMENT OF THE CBI FOR ARBITRARY FILLINGS

Motivation:
- Many storage ring modes of operation require multi-bunch

configurations that differ from uniform fillings: gap in the fillings
for ion clearing (NSLS-II), special multi-bunch configurations
with a single high charge bunch (camshaft) .

- Desire to operate with the most stable multi-bunch configuration.
The treatment is based on the formulation of an eigenvalue
problem defined by the complex frequency shifts of the uniform
filling pattern case.
The numerical solution of the eigenvalue problem allows the
study of instability thresholds via the determination of the
eigenvalue with the largest imaginary part.
As a complementary tool to the computation of the eigenvalue
spectrum we discuss the Gerschgorin Circle Theorem.
The application of the Gerschgorin Circle Theorem is useful for

A) a rapid localization of the eigenvalues in the complex plane.
B) very efficient perturbative studies of uniform filling patterns.
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TRANSVERSE EIGENANALYSIS
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EQUATIONS FOR THE EVOLUTION OF DIPOLE MOMENTS

The time evolution of the dipole moments hx
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where [m + k] = m + k � Mb(m + k)/Mc, with bxc the floor function
(gives the largest integer less or equal to x).
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EQUATIONS FOR THE EVOLUTION OF MODE x̃µ

Defining the mode x̃µ by

x̃µ(t) =
M�1X

m=0

x

m

(t)e�i2⇡mµ/M, x

m

(t) =
1
M

M�1X

µ=0

x̃µ(t)e
i2⇡mµ/M,

it follows that x̃µ are coupled and satisfy the equations of motion
TIME EVOLUTION MODE x̃µ

¨̃
xµ(t) + !2

� x̃µ(t) = �A

x

M

1X

k=0

f

⇣
k

T0

M

⌘
e

i2⇡µk/M

⇥
M�1X

µ0=0

x̃µ0

⇣
t � k

T0

M

⌘M�1X

m=0

N

m

e

i2⇡m(µ0�µ)/M.

Remark: for N
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= N (uniform filling) the modes x̃µ are uncoupled.
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MULTI-BUNCH MODE x
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PERTURBATIVE SOLUTION

Look for a perturbative solution identifying the perturbation by the
parameter ✏.
Without loss of generality, assume for the perturbative solution the
form
PERTURBATIVE SOLUTION MODE x̃µ
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where a = 2Rex̃µ(0)/M and we set the perturbation parameter ✏ = 1.
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EIGENVALUE EQUATION

The perturbative solution for x̃µ leads to the eigenvalue equation
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Solving for the characteristic polynomial p(⌦) = |B � ⌦I| = 0 and
assuming M distinct eigenvalues ⌦

m
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Since the sum of the eigenvalues of B is equal to the trace of B, it
follows that the sum of the complex frequency shifts ⌦µ for arbitrary
filling patterns is equal to the sum of the complex frequency shifts ⌦U
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GERSCHGORIN CIRCLE THEOREM⇤

Estimation of eigenvalue spectrum very accurate for strictly
diagonally dominant matrices (off-diagonal terms small with respect
to diagonal terms), i.e. for a n ⇥ n complex matrix A = (a
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r

i

defines the radius of a Gerschgorin row disc. Defining similarly the
radius of a Gerschgorin column disc, we have that all of the
eigenvalues of the matrix A are contained in the intersection of the
union of all the row discs and column discs.
⇤S. Gerschgorin, Izv. Akad. Nauk. USSR Otd. Fiz-Mat. Nauk 7, 749-754, (1931).
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BENCHMARKING THEORY AND SIMULATIONS

Study of the coupled-bunch instability driven by the HOMs of the
7-cell PETRA-III RF Cavity (used during commissioning phase 1 of
the NSLS-II storage ring).

TABLE : Transverse HOMs of the 7-cell PETRA-III RF Cavity

f

r

, MHz R

sh,?, M⌦/m Q? R

sh,?/Q?, ⌦/m
860.25 14.7 55700 263.91
867.12 17.5 56800 308.1
869.55 56.1 58200 963.92
870.96 19.7 59400 331.65
1043.53 83.6 40400 2069.31
1047.44 26.2 40900 640.59
1089.13 17.0 49400 344.13
1465.13 15.5 54600 283.88
1545.34 26.8 44300 604.97
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UNIFORM BUNCH TRAIN WITH A GAP
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NSLS-II MEASUREMENTS WITH GAP IN THE FILL PATTERN
(Operational lattice with 3DW gaps closed at zero linear chromaticity)

Calculated CBI threshold from resistive wall impedance I

th

= 22mA.
Fill Pattern Monitor I

b

(single bunch current)

Uniform I

b
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= 24.3mA
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NSLS-II MEASUREMENTS WITH GAP IN THE FILL PATTERN
Fill Pattern from Oscilloscope Tune Measurement from TBT Data
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NSLS-II MEASUREMENTS WITH GAP IN THE FILL PATTERN
Fill Pattern from Oscilloscope Tune Measurement from TBT Data

Non-uniform I

b
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I
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= 24.3mA (higher threshold possibly explained by betatron tune spread across the bunch train induced by single bunch effects)
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THANK YOU!
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BACK-UP
SLIDES
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ELEMENTARY CASE: TWO BUNCHES

For M = 2, and with 2N = N
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ELEMENTARY CASE: TWO BUNCHES
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ELEMENTARY CASE 2: THREE BUNCHES

In the case M = 3 we discuss the configuration
N0 = N1 = 3N/2,N2 = 0, with 3N = N

T

, which describes a
configuration with a missing bunch. The corresponding eigenvalue
problem reads
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